Form No. T611

Dept. of Electrical Engineering
 Second Exam, First Semester: 2017/2018

Course Title: Power Systems 2
Course No: (610412)
Lecturer: Dr. Mohammad Abu-Naser
Question 1:
Time Allowed: 50 Mi
Time Allowed: 50 Minutes

Objectives: This question is related to stability analysis of power systems
A 60 Hz synchronous generator has a transient reactance of $j 0.2 \mathrm{pu}$ and inertia constant $\mathrm{H}=5.66 \mathrm{MJ} / \mathrm{MVA}$. The generator is connected to an infinite bus through a transformer and a double circuit transmission line as shown in the figure. The generator is delivering a real power of 0.77 pu to bus bar 1 . Voltage magnitude at bus 1 is 1.1 pu . The infinite bus voltage $\mathrm{V}=1 \angle 0^{\circ}$.
a) Determine internal generator voltage $\left(\mathrm{E}_{\mathrm{g}}\right)$
b) Write the swing equation that describes the rotor angle during disturbance.
c) A three-phase fault occurs at the middle of one of the lines, the fault is cleared, and the faulted line is isolated. Determine the critical clearing angle using the equal-area criterion.

Question 2:

(10Mark)

Objectives: This question is related to protection of power systems

For the radial system shown below:
a) Select relay settings (CTS and TDS) to protect the system with $\underline{0.4}$ second coordination time interval. Assume CO-7 relay characteristics.
b) Determine the operating time of circuit breakers 1 and 2 for a fault of 1600A.

Good luck

Power Systems 2
Second Exam
First semester, $2017 / 2018$
Model Avers
Question 1)

$$
\text { a) } \begin{aligned}
& P=\frac{V_{1} V_{2}}{x} \sin \delta \\
& 0.77=\frac{1.1 \times 1}{.811 .8} \sin \delta \Rightarrow 0.77=\frac{1.1}{0.4} \sin \delta \Rightarrow \delta=0.28 \mathrm{rad} \\
&=16^{\circ} \\
& V_{1}=1.1116^{\circ} \\
& I=\frac{V_{1}-V_{2}}{j .4}=\frac{1.1116^{\circ}-110^{\circ}}{j .4}=.7731-10.65^{\circ} \\
& P_{n}
\end{aligned} \quad \begin{aligned}
E & =V_{1}+I(j ; 2+j 158) \\
& =11146^{\circ}+.7731-10.65^{\circ}(j .358)=1.25127 .5^{\circ} \\
\delta_{0} & =0.48 \mathrm{rad}=27.5^{\circ}
\end{aligned}
$$

b)

$$
\begin{aligned}
& P_{e_{1}}=\frac{E_{g} V_{t}}{x} \sin \delta \\
&=\frac{1.25 \times 1}{.811 .8+2+2+158} \sin \delta=1.648 \sin \delta \\
& \frac{H}{\pi f} \frac{d^{\delta} \delta}{d t^{2}}=P_{m}-P_{e} \\
& \frac{5.66}{\pi \times 60} \frac{d^{2} \delta}{d t^{2}}=77-1.648 \sin \delta \\
& \frac{d^{2} \delta}{d t^{2}}=25.64-54.88 \sin \delta
\end{aligned}
$$

c) $z_{1}=z_{2}=\frac{8 \times 4}{8 \times 4+4}=.2$

$$
z_{3}=\frac{4 \times \cdot 4}{8+4+4}=1
$$

$$
\begin{aligned}
& z_{1}+2+.158=.558 \\
& z=.2+.558+\frac{.2 \times .558}{.1} \\
& =1.874 \\
& P_{e_{2}}=\frac{E_{g} V_{2}}{z} \sin \delta \\
& =\frac{1.25 \times 1}{1.874} \sin \delta=0.667 \sin \delta \\
& P_{e_{3}}=\frac{E_{g} V_{2}}{12.158+8} \sin \delta=1.079 \sin \delta \\
& a_{a}=\sin ^{-1}\left(\frac{.77}{1.07 a}\right)=.795 \mathrm{rad} \\
& =45.53^{\circ} \\
& \delta_{\text {max }}=\pi-.795 \\
& =2.35 \mathrm{rad}=134.5^{\circ} \\
& \cos \delta_{c_{1}}=\frac{P_{m}\left(\delta_{\operatorname{mix}}-\delta_{0}\right)-P_{\text {taxa }} \cos \delta_{0}+P_{\max } \cos \delta_{\max }}{P_{\text {max }}-P_{\max 2}} \\
& =\frac{.77(2.35-.48)-.667 \cos .48+1.079 \cos 2.35}{1.079-.667} \\
& =.22 \\
& \delta_{\text {or }}=\cos ^{-1} 22=1.35 \mathrm{rad}=77.2^{\circ} \text {. }
\end{aligned}
$$

Question 2
a) $\frac{\text { Relay } 1}{P S M=\frac{210}{20015}}=5.25 \quad$ select CTS $=6 \mathrm{~A}$

Relay 2

$$
\begin{array}{r}
I_{L_{2}}=210+130=340 \mathrm{~A} \\
-2-
\end{array}
$$

$$
\begin{aligned}
& P S M=\frac{340}{20015}=8.5 \quad \text { select } C T S=10 \mathrm{~A} \\
& \text { Relay } 3^{2} \\
& I_{L_{3}}=210+130+350=690 \mathrm{~A} \\
& \text { PpM }=\frac{690}{40015}=8.625 \quad \text { select } C T S=10 \mathrm{~A}
\end{aligned}
$$

Now TOS
Relay 2

$$
\text { PS }=\frac{3000 / 20015}{6}=12.5
$$

$T D S=\frac{1}{2}$, From curve $T_{1}=0.1 \mathrm{~S}$.
Relay 2
backup PSM $=\frac{3000 /(20015)}{10}=7.5$

$$
T_{2}=4+.1=5 s \Rightarrow T D S=2 .
$$

relay primary PSM $=\frac{4800 / 20015}{10}=12$, from Curve $T_{2}=45$
relay 3 back up $P S M=\frac{4800 / 40015}{10}=6$

$$
T_{3}=4+4=.85 \Rightarrow T D S=3
$$

b) Relay 1

$$
\rho S M=\frac{1600 / 20015}{6}=6.67
$$

From carve $T D S=\frac{1}{2} \Rightarrow T=0.1 \mathrm{~S}$
Relay 2

$$
P S M=\frac{1600 / 20015}{10}=4
$$

From curve $T D S=2 \Rightarrow T=0.7 \mathrm{~s}$

